
Use this space to add an image.
Insert an image and change the scale to cover this box.

Algorithms,
cryptography
and protocols

DON’T EVER ROLL YOUR OWN
PROTOCOL, CRYPTO ALGO, CRYPTO
IMPLEMENTATION, OR CRYPTO RNG

ALSO, KEY MANAGEMENT IS VERY
VERY HARD

1

Who?
Kate Pearce - Head of Security at Trade Me (@secvalve)

I work to ensure that the data Trade Me holds for our customers,
and the services it provides them, are trusted, trustworthy, and
trusty (resilient).

Trade Me
Trade Me and its systems are incredibly prevalent in New
Zealand:

● Marketplace (Auctions, listing goods new & secondhand)
● Motors (New and used car listings)
● Property (Rental, Purchase, & Commercial)
● Jobs (Job Listings)
● Payments (Credit Card Processor)
● Holiday Houses
● Dating

Trade Me has unparallelled Brand Presence in New Zealand, and
the vast majority of New Zealand’s adult population in our
systems.

Multiple millions of
accounts in a country
of 4.8 Million
(~around 1M under
age 18)

> 2 Million Daily
interactions

@Secvalve -- 2

CCSA,
https://m.flikr.com/#/photos/4nitsirk

3

Use this space to add an image.
Insert an image and change the scale to

cover this box.

1. Principles &
Goals

2. Building Blocks
3. Protocols

Security.ac.nz -- @secvalve - -4

tldr;

DO Use Public
Algorithms

DO NOT Roll-your-own
Algo/Function

CONCENTRATE ON Key
Distribution

DO Use Public Protocols DO NOT Roll-your-own
Protocol

CONCENTRATE ON Key
Management

DO Use Secure PRNG for
Keys

DO NOT Roll-your-own
PRNG OR Use a

non-secure PRNG

DO Use a Secure
Implementation

DO NOT Implement your
own

DO Use Recommended
Cipher Suites

DO NOT Use Bad, Weak,
or Null Suites

DO Use Slow Algorithms
and Salt Secret Hashes

DO NOT Hash Secrets
with simple or fast

hashes Security.ac.nz -- @secvalve - -5

● Is aiming at the key things people make

mistakes with

● Is not going deep into details

○ Will not tell you which tech or configuration

to use

● May have errors because cryptography is hard

to do well

This Presentation

Security.ac.nz -- @secvalve - -6

Principles & Goals

Security.ac.nz -- @secvalve - -7

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Protocols - 3 way
handshake

Security.ac.nz -- @secvalve - -8

Principles - 3 Way handshake

Security.ac.nz -- @secvalve - -9

Hello, shall we talk?

Yep! ….*starts talking*

Sure, still good to talk?

talking intensifies

Principles - 3 Way handshake

Security.ac.nz -- @secvalve - -10

SYN

ACK

SYN ACK

ACK ACK ACK ACK ACK ACK

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Cryptography

Security.ac.nz -- @secvalve - -11

Principles

Cryptography
Security.ac.nz -- @secvalve - -12

Principles

Cryptography
Security.ac.nz -- @secvalve - -13

Principles

Secret

Cryptography

Writing

Security.ac.nz -- @secvalve - -14

Cryptography is Control

Cryptography is Economics

Principles

Cryptography is Openness
Kerckhoffs's Principle
- “A cryptosystem should be secure even if everything about the
system, except the key, is public knowledge.”

Shannon’s Maxim
- “The enemy knows the system”

Security.ac.nz -- @secvalve - -15

Confidentiality - Privacy

Authenticity - Sender

Cryptography Goals

Integrity - Message
Security.ac.nz -- @secvalve - -16

Primitives, and
Building Blocks

Security.ac.nz -- @secvalve - -17

Keys

Symmetric
Keys

Pseudo
Random
Number

Generator
(PRNG)

XOR S-BOX Trapdoor (one-way)
Function

Public and
Private
Keys

Some Key Primitives (and components)

Hashes
Message
Integrity
Codes

Not going over all this
in detail

Security.ac.nz -- @secvalve - -18

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Symmetric Encryption

Security.ac.nz -- @secvalve - -19

Symmetric Cryptography

Cipher
W8$fd3

Encryption

(Plaintext) (Ciphertext)
ABCDEF

Key

NOPQRSABCDEF ROT(X)

BCDEFG

RSTUVW

X = 1

X = 17

X = 13

Security.ac.nz -- @secvalve - -20

Symmetric Cryptography

Cipher
ABCDEFW8$fd3

Decryption

(Plaintext)(Ciphertext)

Key

NOPQRS
ABCDEFROT(X)

BCDEFG

RSTUVW

X = 1

X = 17

X = 13

Security.ac.nz -- @secvalve - -21

Symmetric Cryptography

Cipher
W8$fd3

Cipher
ABCDEFW8$fd3

Encryption

Decryption

(Plaintext)

(Plaintext)(Ciphertext)

(Ciphertext)
ABCDEF

Key

Security.ac.nz -- @secvalve - -22

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Hashing and Trapdoor
Functions

Security.ac.nz -- @secvalve - -23

Hashing and Trapdoor Functions

Is this the same?

Security.ac.nz -- @secvalve - -24

Hashing and Trapdoor Functions

They had a red shirt

Security.ac.nz -- @secvalve - -25

Hashing and Trapdoor Functions

The number has a
remainder of 1 when

divided by 2

Security.ac.nz -- @secvalve - -26

Hashing and Trapdoor Functions

The number has a
remainder of 5 when

divided by 15

Security.ac.nz -- @secvalve - -27

Hashing and Trapdoor Functions

The number has a
remainder of 11 when

divided by 73

Security.ac.nz -- @secvalve - -28

Hashing and Trapdoor Functions

They had a red shirt
And green gumboots

And a lot of hair
And mittens

And were a cat
Security.ac.nz -- @secvalve - -29

Hashing and Trapdoor Functions

Hash

SA#2KH
gfh@f*2

Hashing

(Plaintext) (Hash)

ABCDEF

Security.ac.nz -- @secvalve - -30

Hashing and Trapdoor Functions

Hashing cannot go the other
way, as information is lost

Red Shirt?

Security.ac.nz -- @secvalve - -31

Hashing and Trapdoor Functions

Hashing cannot go the other
way, as information is lost

But it may tell you enough to
be confident something is

the same to the hashed thing

Security.ac.nz -- @secvalve - -32

Hashing and Trapdoor Functions

Hashing can be used to verify authenticity

X
Hash(Msg
A + MsgB)

Hash(Msg
B + MsgC)

Hash(Msg
C + MsgD)

Message A

Message b

Message C

Message D

Hash(Msg
D + MsgE)

Message e

A Message must
have come after

those it signs

A past message cannot
be altered without

breaking the later hashes

Security.ac.nz -- @secvalve - -33

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Asymmetric Encryption

Security.ac.nz -- @secvalve - -34

We can gain security
from with operations
that are vastly more
difficult to reverse
without some useful
information

Asymmetric Encryption?

Security.ac.nz -- @secvalve - -35

We can gain security
from with operations
that are vastly more
difficult to reverse
without some useful
information

Asymmetric Encryption?

Security.ac.nz -- @secvalve - -36

We can gain security from with operations
that are vastly more difficult to reverse
without some useful information

Go through the hidden trapdoor activated by
the statue’s eye

Or, in mathematics: factoring numbers

Asymmetric Encryption?

Security.ac.nz -- @secvalve - -37

How do we protect our
communications if we’ve never
met?

How do we share a key without
observers being able to use it?

With Public-Key Cryptography

Asymmetric Encryption?

Security.ac.nz -- @secvalve - -38

Asymmetric Cryptography

PRIVATE

NEVER SHARED EVER

PRIVATE

NEEDS TO BE SHARED

Shared PUBLICLY

NEEDS TO BE SHARED

PRIVATE
KEY

PUBLIC
KEY

Security.ac.nz -- @secvalve - -39

Asymmetric Cryptography

ABC
DEF RSA(k) $(*2e4d

K =
PRIVATE

KEY

RSA(k)

K = PUBLIC

KEY

ABC
DEF

Security.ac.nz -- @secvalve - -40

Asymmetric Cryptography

ABC
DEF RSA(k) $(*2e4d

K =
PRIVATE

KEY

RSA(k)
K = PUBLIC

KEY
ABC
DEF

Security.ac.nz -- @secvalve - -41

SO WHAT?

We now know:
- If something is encrypted with a Public Key it

can only be read with the corresponding private
key

- If something decrypts with a Public Key it was
encrypted with the corresponding private key

Now each party has a way to communicate to the
other party secretly.

Asymmetric Cryptography

Security.ac.nz -- @secvalve - -42

Now each party has a way to communicate to the
other party secretly.

Example: (NOT HOW Diffie-Hellman Key Exchange WORKS)

1. BOTH Publicly: Let’s use our a common word “peregrine”

2. Alice sends a message [encrypted with Bob’s public Key] to use the secret word
“Opossum”
a. Only Bob can read this

3. Bob sends Alice a message [encrypted with his private key and then her public
key] and then his to use the secret word “WeaselSquawk”
a. Only Bob can have sent this, Only Alice can read it

They now have a key to use for symmetric encryption:
peregrineOpossumWeaselSquawk

Exercise: Find the vulnerability in this method (Hint: how does Bob Auth Alice?)

Asymmetric Cryptography

Security.ac.nz -- @secvalve - -43

Why not use Public-private cryptography all the
time?

It is thousands of times more computationally
intensive (And key reuse should be avoided)

Asymmetric Cryptography

Security.ac.nz -- @secvalve - -44

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Signing and Message
Integrity Codes

Security.ac.nz -- @secvalve - -45

We also now have a way to validate the
authenticity of something!

If i send you a hash result that has been put
through my private key (signed) then you can
compare the value i sent with the value you get
checking yourself!

If they’re the same then you know it came from
me.

Asymmetric Cryptography

Security.ac.nz -- @secvalve - -46

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Public Key
Infrastructure

Security.ac.nz -- @secvalve - -47

How do we know the public key is
the right one?

We could share it in advance
…

BUT THAT’S THE SAME PROBLEM
AS BEFORE!

Public Key Infrastructure

Security.ac.nz -- @secvalve - -48

How do we know the public key is
the right one?

With Public-Key Infrastructure

Public Key Infrastructure

Security.ac.nz -- @secvalve - -49

How do we know the public key is
the right one?

With Public-Key Infrastructure

(We have common friends)

Public Key Infrastructure

Security.ac.nz -- @secvalve - -50

How do we know the public key is
the right one?

With Public-Key Infrastructure

(We have common friends)
(Who have common friends)

Public Key Infrastructure

Security.ac.nz -- @secvalve - -51

I attest
Alice’s Key

Signed
Elizabeth

Public Key Infrastructure Elizabeth Has
Signed the
Certificate

Alice Asks
Elizabeth to
Verify Her Public
Key

Becky Already Trusts
Elizabeth and Her
Public Key

(It was in her web
browser)Security.ac.nz -- @secvalve - -52

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Self-Signing

Security.ac.nz -- @secvalve - -53

I attest
Alice’s Key

Signed
Alice

Cryptography Gotchas

Self-signed certificates break the whole
system as you can’t tell if someone is in
the middle

Security.ac.nz -- @secvalve - -54

Alice’s
Key

Signed
Alice

Cryptography Gotchas

Self-signed certificates break the whole
system as you can’t tell if someone is in the
middle

Alice’s
Key

Signed
“Alice”

Security.ac.nz -- @secvalve - -55

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Computers and
Randomness

Security.ac.nz -- @secvalve - -56

Computers and Randomness

It doesn’t matter how
good your encryption

algorithm is if your key is
easily guessed

...but...
Security.ac.nz -- @secvalve - -57

Computers and Randomness

Computers:
- Are terrible at randomness
- Do exactly what they are told

Given the same input, they do the the
same thing every. single. Time.

So… how do we get a good key?
Security.ac.nz -- @secvalve - -58

Computers and Randomness

So… how do we get a good key?

With a Random Number Generator
(RNG)?
● No - Computers don’t [usually] have those

Security.ac.nz -- @secvalve - -59

Computers and Randomness

So… how do we get a good key?

With a Pseudo Random Number Generator
(PRNG)?
● Maybe, but probably not

Security.ac.nz -- @secvalve - -60

Computers and Randomness

So… how do we get a good key?

With a Cryptographically Secure Pseudo
Random Number Generator
(CSPRNG/CPRNG)?

YES!

You get a biscuit:

Security.ac.nz -- @secvalve - -61

Computers and Randomness

Don’t use a normal random generator for
cryptography. Ever.

(Also, don’t use the wrong Datatype for a key. Ever)

STORY TIME!

Security.ac.nz -- @secvalve - -62

STORY TIME!
Blockchain Bandit and How to lose
millions of dollars of crypto coins

https://www.wired.com/story/blockchain-bandit-ethereum-weak-private-keys/

Security.ac.nz -- @secvalve - -63

https://www.wired.com/story/blockchain-bandit-ethereum-weak-private-keys/

Computers and Randomness

This brings us to another point.

Hashing does not provide privacy if
the input values can be predicted.

Security.ac.nz -- @secvalve - -64

Computers and Randomness

Hashing does not provide privacy or security
if the input values can be predicted, or if
values can be tested rapidly.

● Hashes can be tested at speeds of millions
to billions of values per second

● Some things come in only a limited number
of values.

Security.ac.nz -- @secvalve - -65

Computers and Randomness

Never ever simply hash secrets, or
things with predictable values, for

“security” or privacy reasons:
● Names
● Usernames
● User ID’s
● Passwords

● Credit Card Numbers
● Email Addresses
● Phone Numbers
● IP/Mac Addresses

Security.ac.nz -- @secvalve - -66

Computers and Randomness

But, i haven’t discussed how to store
important secrets yet have i?

Security.ac.nz -- @secvalve - -67

Use this space to add an image.
Insert an image and change the scale to

cover this box.

Secret Storage!

Security.ac.nz -- @secvalve - -68

Secret Storage

Here’s the thing about user
passwords.

You do NOT need to store them
● NEVER EVER store raw or encoded passwords
● Never Reversibly Encrypt Passwords

You only need to know if a given
password is correct

Security.ac.nz -- @secvalve - -69

Secret Storage

You only need to know if a given
password is correct

So, we use hashes!

Security.ac.nz -- @secvalve - -70

Secret Storage

Hash
11e263bb7f4
95e17912de7
85da8829fa

BAD PASSWORD Hashing

(Text)

NOYOUARE

(Password Hash)

By storing the hash we do not know user’s
password, and cannot leak it

But, DON’T USE A NORMAL HASH For
PASSWORDS. See next slide

Security.ac.nz -- @secvalve - -71

Secret Storage

But, DON’T USE A NORMAL HASH For
PASSWORDS.

Presume attackers will compromise them, and:

● DO NOT Truncate, or change the case of,
passwords before hashing

● Use a SLOW & computationally intensive hash
○ (Argon2, PBKDF2,Scrypt - or bcrypt if you have to)
○ NEVER USE MD5, SHA-X, or FOR PASSWORDS

● Use a complex, user-specific, SALT in your
calculated hash value

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
Security.ac.nz -- @secvalve - -72

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md

Protocols

Security.ac.nz -- @secvalve - -73

Protocols

I haven’t actually mentioned a lot of
protocols have i?

Security.ac.nz -- @secvalve - -74

Protocols

Here’s a few protocols you may want basics on:
ARP / DHCP

802.11
TCP/IP

FTP
UDP
ICMP
SMTP

HTTP / HTTP2 / HTTP3|QUIC
DNS

SSL/TLS
But, no time for that today!

Security.ac.nz -- @secvalve - -75

Protocols

Because here’s the thing...

Security.ac.nz -- @secvalve - -76

Protocols

These building blocks in various combinations are
what makes the algorithms:

SSH -> Public/Private Authentication (without
Certificates to verify)

HTTPS -> HTTP Protected with SSL/TLS (Which is
the certificate-based encryption)

Bitcoin & Crypto Currencies -> Hash Chains (and a
bit more stuff)

Security.ac.nz -- @secvalve - -77

Conclusion

Security.ac.nz -- @secvalve - -78

Cryptography is Control

Cryptography is Economics

Principles

Cryptography is Openness
Kerckhoffs's Principle
- “A cryptosystem should be secure even if everything about the
system, except the key, is public knowledge.”

Shannon’s Maxim
- “The enemy knows the system”

Security.ac.nz -- @secvalve - -79

ProtocolsSome things i didn’t cover but wanted to:

● Digital Rights
Management

● Web Of Trust
● Ransomware
● Steganography
● Forward Secrecy
● Quantum

Computing
● Specific Protocol

Recommendations

● Cryptanalysis and Cryptographic
Attacks
○ Ciphertext-only,
○ Known Plaintext,
○ Chosen plaintext,
○ Chosen ciphertext

● Implementation and Key Attacks
○ Birthday Attacks,
○ Key and Plaintext Guessing

Attacks,
○ Side Channel Attacks,
○ Rainbow Tables

Security.ac.nz -- @secvalve - -80

tldr;

DO Use Public
Algorithms

DO NOT Roll-your-own
Algo/Function

CONCENTRATE ON Key
Distribution

DO Use Public Protocols DO NOT Roll-your-own
Protocol

CONCENTRATE ON Key
Management

DO Use Secure PRNG for
Keys

DO NOT Roll-your-own
PRNG OR Use a

non-secure PRNG

DO Use a Secure
Implementation

DO NOT Implement your
own

DO Use Recommended
Cipher Suites

DO NOT Use Bad, Weak,
or Null Suites

DO Use Slow Algorithms
and Salt Secret Hashes

DO NOT Hash Secrets
with simple or fast

hashes Security.ac.nz -- @secvalve - -81

