
Security Considerations for

Mobile Apps and APIs

John DiLeo, D.Sc. (@gr4ybeard)

OWASP New Zealand - Auckland

August 2019

“Well…how did I get here?”

• Born and raised in northeastern US

• Straight to university from high school

– B.S.E.E. in Computer Engineering

– No relevant summer jobs or internships

• Started first job four weeks after graduation

• Swore would never return to school

“Well…how did I get here?”

• Phase 1: Operations Research / Simulation

– US military systems (Army/DoD)

• Other duties: TEMPEST assessments, Unix admin.

– US air traffic control (FAA)

– Two Master’s degrees, part-time

– Doctoral research: FreeSML simulation “language”

• This phase lasted 17 years

“Well…how did I get here?”

• Phase 2: Java/Web App Development

– Tinkering: Java Applets, CGI Scripts, etc.

– Studies: Programming Languages course

– Teaching: Info. Systems, Programming, Maths

– Building server-side applications

• US Dept. of Agriculture – Farm subsidy programmes

• Java, JSP, Struts, Spring, etc.

• “Heavyweight” Web Services – SOAP, EJBs

– Shifted to Architect roles – mostly AFK since

• This phase lasted 18 years

“And you may find yourself in another

part of the world”

• Phase 3: Application Security

– Started with teaching…again

– Cross-trained: GSSP-Java, GSEC, CEH

– Secure Coding à Software Assurance

– Moved to New Zealand in 2017

• This phase has lasted six years, so far…

– BTW…it has NOT been 41 years since graduation

– There were overlaps

“And you may find yourself in a

beautiful house…”

• Joined Orion Health in December 2017

– I am the Application Security Team

– And usually work out of Orion House, in Auckland

• Orion specialises in healthcare information systems

– Electronic Medical Records

– Healthcare Analytics

– “Precision Medicine” (Machine Learning)

– PHI protection has to be a high priority

• Customers world-wide

– District/Regional Health Boards

– Private Health Insurers

– Hospitals

– Health Information Exchanges (HIEs)

Sidebar: Orion Heath is Hiring

• Current headcount: 650+

– Development teams in Auckland, Christchurch,

Canberra, Bangkok, Montreal

– Solution implementation teams worldwide

• Hiring Intern and Graduate Developers

– Working in Auckland (for Grads, initially)

– Apply through: summeroftech.co.nz

– CV review already ongoing

– Interviews 17 September, in Auckland

– Offers out in early October

https://summeroftech.co.nz/

“Letting the days go by…”

Then…I got involved in OWASP

– OWASP Kansas City Chapter

• Spoke up at Meetups

• Invited to join Chapter Steering Committee

– OWASP New Zealand Chapter

• Attended OWASP NZ Day

• Filled vacant role as Auckland-area Leader

– OWASP Projects

• Software Assurance Maturity Model (SAMM) Project

• Co-Leader, AppSec Curriculum Project

OWASP Activities and Events

• Global AppSec Conferences

– December 2020: Tokyo (tentative)

• Regional AppSec Conferences

– AppSec Days, Sydney

• Training: 28 – 31 October

• Conference: 1 November

• Meetups - Auckland, Christchurch, Wellington

• Chapter Mailing List

To join:

https://groups.google.com/a/owasp.org/forum/#!foru

m/new-zealand-chapter/join

• InfoSecNZ Slack (infosecnz.slack.com)

https://groups.google.com/a/owasp.org/forum/
https://infosecnz.slack.com/

OWASP New Zealand Day

• University of Auckland Business School

– Training: 19 – 20 February

– Conference: 21 February – Still FREE!

• Some travel “scholarships” will be available

– Applications will open 1 December

• Training

– Fees higher this year

• Half-day class: $325

• One-day class: $625

• Two-day class: $1250

– But…watch for future news

OWASP New Zealand Day

Sponsors to Date

And now…this

Something, Something,

Mobile App Security

OWASP Resources

• Web Site – https://www.owasp.org

• Mobile Security Project

– Mobile Top Ten

– Mobile Security Testing Guide (MSTG) (LeanPub)

– Mobile AppSec Verification Standard (MASVS) (PDF)

– Mobile Application Security Checklist (GitHub)

https://www.owasp.org/
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://leanpub.com/mobile-security-testing-guide
https://github.com/OWASP/owasp-masvs/releases/download/1.1.4/OWASP_Mobile_AppSec_Verification_Standard_1.1.4_Document.pdf
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

OWASP Mobile Top 10 (2016)

M1 – Improper Platform Usage

M2 – Insecure Data Storage

M3 – Insecure Communication

M4 – Insecure Authentication

M5 – Insufficient Cryptography

M6 – Insecure Authorization

M7 – Client Code Quality

M8 – Code Tampering

M9 - Reverse Engineering

M10 – Extraneous Functionality

Mobile and Client-Side Apps

Mobile apps and client-side applications have a lot in common

– Emphasis on responsive user experience

– Business logic executes in end-user device

– Rely on “back-end” service requests to obtain/persist data

Much of what we’ll look at really applies to both

Considerations when Building Apps

• SECURITY and PRIVACY – Design it in from the start!

• User experience and useability

• Performance

• Platform(s) to support

• Testing approach

• Monetization

– Payment processing

– Users: The customer or the product?

• Future-proofing

– Scalability

– Reliability

– Updates and patching

Security Mobile Apps

What should I worry about?

Well…what’s in the threat model?
“Four Questions” Approach (Adam Shostack)

1. What are we building?

2. What could go wrong (threat)?

3. What can we do about that (mitigation)?

4. How did we do?

• Verify mitigations

• Validate model

What are we building?

• Mobile app

– Our source code (usually proprietary)

– Core platform and build system

– Third-party libraries

– Local data storage, including keys/credentials

– Device function interfaces (camera, GPS, etc.)

• REST APIs

• Data

– Users

– Subjects

– Transactions à Users’ rights/permissions/abilities/swag

What could go wrong?

- Our source code

• Insecure code

– Injection vulnerabilities

– Home-built encryption or AuthX system

– Buffer overflows

– Memory management issues (leaks)

– Test mode/test code/demo creds included in releases

Mobile Top 10: M7 – Client Code Quality
M10 – Extraneous Functionality

Mitigation: Don’t do that!

– Developer training and awareness

– Secure coding standards

– Shared libraries/services

– Automated security testing (static and/or dynamic)

– Code reviews

What could go wrong?

- Our source code

• Malicious modification

– Source code, in the repository

– Executable app – in store

– Executable app – through unauthorized redistribution

Mobile Top 10: M8 – Code Tampering
Mitigation:
– Restrict access to source code repositories

– Restrict access to build-publish pipeline

– Separation of duties in release approval process

– Use application signing

– Distribute only through reputable app stores

– Provenance checking – more challenging

What could go wrong?

- Our source code

• Theft

– Publication

– Appropriation

– Zero-day attacks

Mobile Top 10: M9 – Reverse Engineering
Mitigation:
– Restrict access to source code repositories

– Data Loss Prevention (DLP)

– Robust Joiners/Movers/Leavers (JML) processes

– Anti-reverse engineering techniques

What could go wrong?

- Our source code

• Corruption / Destruction

– Entire code base

– Recent work

– Expert knowledge

Mitigation:
– Replication and/or backups of code repositories

• And test them!

– Developer training: Frequent commits

– Never skip documentation “to save time”

– JML processes, again

What could go wrong?

- Core Platform and Build System

• Vulnerabilities in core platform libraries

• Vulnerabilities in build system components

Mobile Top 10: M7 – Client Code Quality
Mitigation:
– Pay attention to various “intelligence channels”

• “Official” sources: US-CERT, CERT NZ, vendors

• “Informal” channels: Twitter, Blogs, Reddit (usually faster)

• “News summary” sources: Slashdot, etc. (usually slower)

– Install patches/updates, obtained from trusted

sources, in a reliable, timely manner

What could go wrong?

- Third-Party Libraries

• Vulnerabilities in core platform libraries

• Vulnerabilities in build system components

Mobile Top 10: M7 – Client Code Quality
Mitigation:
– Pay attention to various “intelligence channels”

– Install patches/updates, obtained from trusted

sources, in a reliable, timely manner

– Have a complete inventory of dependencies –

including dependencies of dependencies

– Use locked, local mirrors for releases

What could go wrong?

- Local Data Storage (on device)

• Sensitive data / credentials stored insecurely

Mobile Top 10: M2 – Insecure Data Storage
M5 – Insufficient Cryptography

Mitigation:
– Leverage device support (e.g., Private mode)

– Encrypt all data

• Incorporate factor known by user (when possible)

• Use device-provided support for key storage

What could go wrong?

- Device function interfaces

• App has permissions to access and/or update

hardware/data it doesn’t need

Mobile Top 10: M1 – Improper Platform Usage
Mitigation:
– Request only the minimum set of permissions

required

– Request permission for “high-value” access only if

user requests functionality requires it
– Ensure app responds sensibly, if permission for

“high-value” access is denied

What could go wrong?

- REST APIs

• Unauthenticated client accesses sensitive data

– Authentication not implemented / enforced

– Steal valid credentials

– Fabricate valid credentials

– Authentication bypass / race conditions

Mobile Top 10: M4 – Insecure Authentication
Mitigation:
– Use strong authentication mechanisms

– Delegate to IDaaS provider when possible

– What Kate said: DON’T create your own!

What could go wrong?

- REST APIs

• Access from stolen device

Mobile Top 10: M4 – Insecure Authentication

Mitigation:
– Require additional local authentication (e.g., PIN)

– Disable user’s access when theft is reported

What could go wrong?

- REST APIs

• Authenticated client accesses unauthorized data

– Access controls not implemented / enforced

– Access checks not granular enough

– Authorization bypass / race conditions

Mobile Top 10: M6 – Insecure Authorization
Mitigation:
– Assume NOTHING about client’s authorization

– Use robust authorization frameworks

– AVOID creating your own

– Deny-by-default strategy

– Thoroughly test access control rules

What could go wrong?

- REST APIs

• Sensitive data “sniffed” in request/response traffic

– Client-to-server connections not encrypted

– Known insecure encryption mechanism used

– Sensitive data in request URLs

– Machine-in-the-middle intercepts traffic (TLS Stripping)

Mobile Top 10: M5 – Insufficient Cryptography
Mitigation:
– Publish your API, take reported issues seriously

– Use TLS 1.2 or 1.3 only

– Remove server support for insecure ciphers

– AVOID responding to HTTP requests (Port 80)

What could go wrong?

- Data on the server

• Users’ personal information stolen

• Transaction data stolen/faked/corrupted

Mitigation:
– NEVER collect, store, or share any information you

don’t need to

– Follow best practices for databases

• Encryption

• Access controls

• Separation of duties

Privacy

• Obligation to protect customers’ data

– Personally identifiable information (PII)

– Bank / credit card information

– Breach penalties vary by country, but are STEEP

• Do you REALLY need it?

– If you don’t collect it, you can’t misuse/lose it

– If you don’t store it, it won’t be in a data breach

– If you don’t sell/share it, it won’t be in their data breach

john.dileo@owasp.org
@gr4ybeard

Coming Soon:

I’ll join the 21
st

Century and launch a Blog

It’s called “Gr4ybeard’s Treasure” because…

why not?

mailto:john.dileo@owasp.org

Questions?

